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• Review of linear algebra 

– Ordinary vector spaces 

– Inner product 

– Hilbert space

• Matrices 

– Decomposition of matrices

– Quadratic form

– Singular value decomposition

– Gram-Schmidt Orthonormalization

– Solution of linear systems of equations

2

Agenda 



• In ordinary Euclidean space, vectors are mathematical objects that have 

magnitude and direction; they can be combined by addition and scaled by 

multiplying by a number (scalar) in ℝ;

• We can add and scale vectors as illustrated in the graphic on the right;

• The sum of the two vectors in 2D space is given as

𝒗 = 𝛼𝒗𝟏 + 𝛽𝒗𝟐 Eqn. (2.1);

▪ The vector 𝒗 is a linear combination (superposition) of the two vectors 𝒗𝟏 and 

𝒗𝟐, which are considered unit measures of distance along the appropriate 

directions; 𝛼 and 𝛽 are scaling factors (scalars);

▪ Clearly any arbitrary vector 𝑣 in the 2D plane can be written as a linear 

combination (superposition) of 𝒗𝟏 and 𝒗𝟐 for any arbitrary scalars 𝛼 and 

𝛽, which are just numbers in ℝ2;

▪ A collection of all vectors formed for arbitrary 𝛼 and 𝛽 constitute a set of 

vectors in a real vector space in 2D spanned by the basis vectors 𝒗𝟏 and 𝒗𝟐.
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Vectors in Euclidean Space



• The inner (or scalar) product of two vectors 𝒗𝟏 and 𝒗𝟐 is defined as 𝒗𝟏. 𝒗𝟐 = 𝑣1 𝑣2 cos 𝜗, where 

𝒗𝟏 and 𝒗𝟏 are the lengths of the vectors 𝒗𝟏 and 𝒗𝟐, and 𝜗 is the angle between them;

• If 𝑣1 and 𝑣2 are unit vectors, then 𝑣1 = 𝑣2 = 1 and if the angle 𝜗 between them is 0, then the inner 

product 𝒗𝟏. 𝒗𝟐 = 𝑣1 𝑣2 cos 0o =1 = 𝒗𝟏. 𝒗𝟏 = 𝒗𝟐. 𝒗𝟐. This is a condition for parallel vectors;

• Now suppose the angle 𝜗 between the unit vectors is 90o; then 𝒗𝟏. 𝒗𝟐 = 𝑣1 𝑣2 cos 90o = 0. This is a 

condition for orthogonality of the unit vectors;

• Orthogonal unit vectors as defined above can be the basis vectors that span a 2D vector space. Any vector 

in this 2D space can be written, as before, as 𝑣 = 𝛼𝑣1 + 𝛽𝑣2 but this time 𝑣1 and 𝑣2 are orthogonal unit 

(orthonormal) vectors, and the scalars 𝛼 and 𝛽 provide an answer to the question “how much” of each 

unit vector is required in this linear combination.
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Inner Product 



Projection and inner product 

• The projection of vector 𝒃 onto vector 𝒂 is the vector

𝒑 = 𝛾𝒂;

• Vector 𝒃 − 𝒑 is perpendicular to vector 𝒂; this means 

𝒂. 𝒃 − 𝜸𝒂 = 0 or 𝒂. 𝒃 − 𝛾𝒂. 𝒂 = 0;

• We deduce that 𝛾 =
𝑎.𝑏

𝑎.𝑎
=

𝑎𝑇.𝑏

𝑎𝑇.𝑎
; note 𝑎𝑇 is row vector;

• Projection of 𝒃 onto 𝒂 is therefore 𝑝 =
𝑎𝑇𝑏

𝑎𝑇𝑎
𝑎;

• From 𝑝 = 𝒂𝛾 = 𝒂
𝑎𝑇𝑏

𝑎𝑇𝑎
=

𝑎𝑎𝑇

𝑎𝑇𝑎
𝒃 = 𝑃𝒃

⟹ Projection matrix 𝑃 =
𝑎𝑎𝑇

𝑎𝑇𝑎
;

• NB: 𝑎𝑎𝑇 is the outer product of vector 𝑎, which is a matrix 

(more on this later).
5



Higher Dimensions  
• In ordinary Euclidian 3D space, one typically denotes orthonormal unit vectors as 𝒊, 𝒋, and 𝒌; we can 

generalize these to 4, 5, and higher dimensional spaces and write them as 𝑢1, 𝑢2, 𝑢3… . 𝑢𝑛, where the 

parallelism and orthogonality conditions become

Eqn. (1.2) ቊ
𝒖𝒏. 𝒖𝒎 = 1, 𝑛 = 𝑚
𝒖𝒏. 𝒖𝒎 = 0, 𝑛 ≠ 𝑚

;

• In generalized n-dimensional “space” any vector 𝒖 can then be written with 𝑐𝑛 a scalar, and 𝑢𝑛 an 

orthonormal vector, as

𝒖 = 𝑐1𝑢1 + 𝑐2𝑢2 +⋯+ 𝑐𝑛𝑢𝑛 = σ𝑛 𝑐𝑛𝑢𝑛 Eqn. (2.2);

• By orthonormality we can determine “how much” of each basis vector contributes to 𝒖, by the operation

𝑐𝑛 = 𝒖𝒏. 𝒖 Eqn. (2.3);

• From here on, the notion of a “vector” and a “vector space” as geometric constructions lose their meaning 

as it becomes impossible to visualize the space;

• All the usual mathematical operations on vectors, however, still have meaning on what is now an abstract

vector space. 
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Defining a Vector Space
• From what we now know, it is apparent that a vector space, 𝑉, is a non-empty set with 

vector elements 𝑢, 𝑣, for which the operations of addition and multiplication are defined 

in the following way:

• (1) 𝑤 = 𝑢 + 𝑣, with 𝑤 ∈ 𝑉;

• (2) For a scalar (number) 𝛼 ∈ ℝ, 𝛼𝑢 ∈ 𝑉;

A vector space also has the following properties:

• For vectors 𝑢, 𝑣, addition is commutative: 𝑢 + 𝑣 = 𝑣 + 𝑢;

• For vectors 𝑢, 𝑣, 𝑤, addition is associative: 𝑢 + 𝑣 + 𝑤 = 𝑢 + 𝑣 + 𝑤 ;

• A vector space 𝑉 has a zero vector, 0 such that 𝑢 + 0 = 0 + 𝑢;

• For 𝑣 in vector space 𝑉, there is an additive inverse −𝑣 such that 𝑣 + −𝑣 = 0.
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Complex Vectors 
• If we decide to allow the multipliers 𝛼 and 𝛽 in 2D and 𝑐𝑛 in 𝑛D space to be complex numbers in 𝐂𝒏, the 

concept of linear combination (superposition) and all the other properties of vectors still hold true in this 

new abstract vector space;

• Given a complex vector in 2D space: 𝒗 = 2 + 𝑗 𝒖𝟏 + (4 + 2𝑗)𝒖𝟐 we can use the concept of inner 

product to define the length of the vector 𝒗, which must be a real number given by

𝒗 = 𝒗∗. 𝒗 = 29 Eqn. (2.4);

• Note that in Eqn. (1.5), we have used the fact that 𝑢1
∗ . 𝑢2 = 𝑢2

∗ . 𝑢1 = 0 because of the orthonormality of the 

basis vectors, and we have further used the fact that 𝑢1
∗ . 𝑢1 = 𝑢2

∗ . 𝑢2 = 1;

• The result above is a consequence of Eqn. (1.5) which makes evident the validity of complex basis vectors.

• The concept of vectors and vector spaces can be generalized to complex vectors in abstract vector spaces of 

arbitrary dimensions;

• If objects can be called vectors and form a vector space, then the rules for ordinary vectors carry over.
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Inner Product of complex vectors 

• If we write the inner product of two vectors 𝒖 and 𝒗 as 𝒖, 𝒗 , then for complex numbers 𝛼 and 𝛽 the 

following is true 

Eqn. (1.6) 

𝒖, 𝒗 = real number
𝑢, 𝑢 ≥ 0

𝑢, 𝑣 ∗ = 𝑣, 𝑢
𝒘, α𝒖 + β𝑣 = α 𝑤, 𝑢 + β 𝑤, 𝑣

;

• The definition of the inner product with a bracket was what motivated the Dirac <bra| and |ket> notation 

for vectors. What goes inside < | is the complex transpose of the vector, and what goes inside | > is 

the column vector;

• Given the ket |𝑣 > =
𝑗
2

, the bra is given by < 𝑣| = −𝑗 2 ; The inner product or the bra-ket is then 

given by: < 𝑣|𝑣 > = −𝑗 2
𝑗
2

= −𝑗 𝑗 + 2 2 = 5;

• We will extensively discuss kets and bras later.
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Hilbert Space

• Complex vectors, like the ordinary vectors we have discussed, can also form a set, 

which is a complex vector space in which addition and multiplication are defined;

• Unlike ordinary Euclidean space, a complex vector space is allowed to be infinite 

dimensional;

• In addition to the foregoing conditions, when there is a properly defined inner product 

for the infinite dimensional, complex vector space, we call it Hilbert Space;

• Hilbert space is convenient for discussing and describing the properties of quantum 

particles (and hence quantum information science, including computing and 

communication);
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Operations (transformations) on vectors
• We can transform one vector to another by performing an 

operation or a transformation on it;

• In two-dimensional 𝑥, 𝑦 space, the operator is a 2 × 2
matrix;

• An anti-clockwise rotation of the (𝑖, 𝑗) orthonormal 
coordinate point, for example, by an angle of 𝜗 is indicated 
on the graphic on the right;

• After rotation, new coordinates for the unit vectors become 
(cos 𝜗, sin 𝜗) for 𝑖 and (− sin 𝜗, cos 𝜗) for 𝑗;

• The rotation operator in matrix form is:

𝑅 𝜗 =
cos 𝜗 − sin 𝜗
sin 𝜗 cos 𝜗

Eqn. (2.5)
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Generalized vectors 
• A general vector is an ordered array of 𝑛 numbers in one dimension that may represent 

properties of a system; the list of numbers can be real in ℝ𝑛 or complex in 𝐶𝑛;

• These numbers could represent, for examples, the velocity, momentum, and kinetic energy of a 

tennis ball hit by Roger Federer at the 2021 US Tennis Open;

• A general abstract vector can be written as 

𝑣 =

𝑣1
𝑣2
⋮
𝑣𝑛

;

• The transpose of the vector 𝑣 is written as 𝑣𝑇 = [𝑣1, 𝑣2, … , 𝑣𝑛] for real components;

• All the rules for geometric vectors apply equally well to this abstract kind of vector.
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Vectors as Linear Combination of Orthonormal Basis Vectors 
• In a conventional 2D vector spaces, when we write a vector such as 𝑣 =

𝑣1
𝑣2

, an implicit 

assumption is that this vector is written in the standard orthogonal unit vector coordinate 

system, which technically is called the standard basis;

• In 2D vector space, the standard basis is: ො𝑢1 =
1
0

and ො𝑢2 =
0
1

, where 

ො𝑢1, ො𝑢2 = ො𝑢1
𝑇𝑢2 =< 𝑢1|𝑢2 >= 0;

• Any vector 𝑣 =
𝑣1
𝑣1

can be written as linear combination of the standard basis, thus

𝑣 =
𝑣1
𝑣2

= 𝑣1
1
0
+ 𝑣2

0
1

= 𝑣1 ො𝑢1 + 𝑣2 ො𝑢2;

• The concept of linear combination can be extended to 3𝐷…and 𝑛𝐷 vector spaces, thus

𝑣 =

𝑣1
𝑣2
⋮
𝑣𝑛

= 𝑣1

1
0
⋮
0

+ 𝑣2

0
1
⋮
0

+ ⋯+ 𝑣𝑛

0
0
⋮
1

.
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Matrices
• In 2D space, we define a matrix as an ordered 2 × 2 array of numbers that transform abstract 

vectors to other vectors; we can extend this to a higher 𝑛 × 𝑛 dimension to define an 𝑛 ×
𝑛 array;

• A matrix A can therefore be written as 

𝐴 =
𝐴11 𝐴12
𝐴21 𝐴22

Eqn. (2.6);

• If the matrix elements 𝐴𝑚𝑛 are real, then 𝐴 ∈ ℝ𝑚×𝑛;

• We define the transpose of real matrix 𝐴 as the mirror image along the main diagonal;

• If 𝐴 =

𝐴11 𝐴12 𝐴13
𝐴21 𝐴22 𝐴23
𝐴31 𝐴32 𝐴33

⟹ 𝐴𝑇 =

𝐴11 𝐴21 𝐴31
𝐴12 𝐴22 𝐴32
𝐴13 𝐴23 𝐴33

Eqn. 2.7 ;
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Complex Matrices

• If the matrix 𝑀 has complex matrix elements, for example,

𝑀 =

2 𝑗
0 0

𝑒𝑗( Τ𝜋 4) 3𝑗
then the transpose is 𝑀𝑇 =

2 0 𝑒𝑗( Τ𝜋 4)

𝑗 0 3𝑗
Eqn. 2.8 ;

• A useful version of the matrix of 𝑀 is the conjugate transpose written as 

𝑀† =
2 0 𝑒−𝑗( Τ𝜋 4)

−𝑗 0 −3𝑗
Eqn. 2.9 ;

• Complex matrices can transform vectors in the same way that real matrices do.
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Operations with Matrices

• The matrix 𝐴 linearly transforms the vector 𝑥 to a new vector 𝑏; this is written as:

𝐴𝑥 = 𝑏

• Or alternatively as    

𝐴11 𝐴12 … 𝐴1𝑛
𝐴21 𝐴22 … 𝐴2𝑛
⋮ ⋮ ⋮ ⋮

𝐴𝑛1 𝐴𝑛2 … 𝐴𝑛𝑛

𝑥1
𝑥2
⋮
𝑥𝑛

=

𝑏1
𝑏2
⋮
𝑏𝑛

Eqn. (2.10);

• This is one of the most important operations in machine learning and quantum 

mechanics;

• For known 𝐴 and 𝑏, one can solve for the unknown 𝑥 in the following manner:

𝐴−1𝐴𝑥 = 𝐴−1𝑏 Eqn. 2.11 .
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Inverse and Identity Matrices 
• An identity matrix does not change the value of a vector; thus, if 𝐼 is an identity matrix, 

where 𝐼 ∈ ℝ𝑛×𝑛 then for all vectors 𝑥 ∈ ℝ𝑛 𝐼𝑥 = 𝑥;

• An 𝑛 × 𝑛 identity matrix 𝐼 =

1 0 … 0
0 1 … 0
⋮ ⋮ ⋮ ⋮
0 0 … 1

Eqn. (2.12)

• An inverse of a square matrix is then defined through 𝑨−𝟏𝑨 = 𝐈;

• Solving for an unknown vector 𝑥 in a linear system of equations, 𝐴𝑥 = 𝑏, means 

𝐴−1𝐴𝑥 = 𝐴−1𝑏 ⟹ 𝐼𝑥 = 𝐴−1𝑏 ⟹ 𝑥 = 𝐴−1𝑏 Eqn. 2.13 ;

• Our task then becomes that of finding the matrix 𝐴−1, if it exists.
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Decomposition of Matrices 

• One can a decompose matrix into factors that expose more universal properties about it;

• One common decomposition of a matrix 𝐴 is to find the eigenvectors and eigenvalues; 

• An eigenvector 𝑣 of a matrix 𝐴 is a vector that, when multiplied by 𝐴, only scales the 

value of 𝑣: thus 𝐴𝑣 = 𝜆𝑣, where the scalar 𝜆 is the eigenvalue;

• For 𝐴𝑣 = 𝜆𝑣 ⟹ 𝐴 − 𝜆𝐼 𝑣 = 0; a solution for 𝑣 exists if 𝐴 − 𝐼𝜆 = 0;

• One can factor the polynomial that results from above to get 

𝐴 − 𝜆𝐼 = λ − 𝜆1 𝜆 − 𝜆2 …(𝜆 − 𝜆𝑛);

• The roots of the polynomial 𝜆 = 𝜆1…𝜆 = 𝜆𝑛 are the eigenvalues of 𝐴.
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Eigen-decomposition 

• A matrix 𝐴 can be written as:  𝐴 = 𝑉

𝜆1 0 … 0
0 𝜆2 … 0
⋮ ⋮ ⋮ 0
0 0 … 𝜆𝑛

𝑉−1 Eqn. (2.14)

where 𝑉 is a matrix composed of all the independent eigenvectors of 𝐴 and 𝜆1…𝜆2 are the eigenvalues of 𝐴;

• The process of assembling the eigenvector and eigenvalues of 𝐴 as shown above is known as the   eigen-

decomposition of 𝐴.

• If 𝐴 is symmetric (𝐴 = 𝐴𝑇), then 𝐴 = 𝑉 ∧ 𝑉𝑇 where 𝑉 =

⋮ ⋮ ⋮

𝑣1
(1)

𝑣2
(2)

𝑣3
(3)

…

⋮ ⋮ ⋮

is an orthogonal matrix 

comprised of all the eigenvectors of 𝐴 and ∧ is a diagonal matrix comprised of the eigenvalues of 𝐴; note 

that orthogonality of V means 𝑣2
(1) 𝑇

𝑣2
(2)

= 0 for each pair of columns of 𝑉.
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Spectral Decomposition

• As we stated, the task of eigen-decomposition is to compute the eigenvalues and 

eigenvectors of 𝐴;

• If 𝐴 is square (𝑛 × 𝑛) and symmetric (𝐴 = 𝐴𝑇), then one can write 

𝐴𝑉 = 𝑉Λ,

where 𝑉 is matrix comprised of columns of the eigenvectors of 𝐴, and Λ is a diagonal 

matrix comprised of the eigenvalues of 𝐴;

• The set of eigenvalues is called the spectrum of 𝐴, hence the spectral decomposition.
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Spectral Decomposition 

• One can reformulate 𝐴 as eigenvalue-eigenvector pairs to arrive at 

𝐴 = σ𝑖=1
𝑘 𝜆𝑖𝑒𝑖𝑒𝑖

𝑇 = 𝐵Λ𝐵𝑇 Eqn. (2.15)

Where 𝜆𝑖 are the eigenvalues and 𝑒𝑖 the normalized eigenvectors; the matrix 𝐵 is 

constructed from the columns of the normalized eigenvectors; furthermore,

𝐵𝑇𝐵 = 𝐵𝐵𝑇 = 𝐼, and Λ is a diagonal matrix of the eigenvalues;

• The inverse of 𝐴 can be computed as 

𝐴−1 = 𝐵Λ−1𝐵𝑇 =෍

𝑖=1

𝑘
1

𝜆𝑖
𝑒𝑖𝑒𝑖

𝑇 Eqn. 2.16 .
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Quadratic Form
• Quadratic form is a generalization of the inner product of a vector with itself;

• Simply defined, a quadratic form 𝑄 on ℝ𝑛 is a function 𝑄: ℝ𝑛 ⟶ℝ of the form 

𝑄 𝑥 = 𝑥𝑇𝐴𝑥 where 𝐴 ∈ ℝ𝑛×𝑛 is a symmetric matrix of the quadratic form;

• Consider 𝐼 =
1 0
0 1

: Q x = [𝑥1 𝑥2]
1 0
0 1

𝑥1
𝑥2

=𝑥1
2 + 𝑥2

2 = 𝑥𝑇𝐼𝑥 = 𝑥𝑇𝑥 = 𝑥. 𝑥;

• Now consider 𝐴 =
5 −3
−3 4

: 𝑄 𝑥 = 𝑥1 𝑥2
5 −3
−3 4

𝑥1
𝑥2

= 5𝑥1
2 + 4𝑥2

2 − 6𝑥1𝑥2;

• Notice that the diagonal elements of matrix 𝐴 are the coefficients of the quadratic terms 

of the polynomial and the off-diagonal elements are one-half of the sum of the cross-

terms of the polynomial (when 𝐴 is symmetric as required in our definition above).
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Writing a polynomial in quadratic form

• Write the polynomial 𝑄 𝑥 = −3𝑥1
2 + 4𝑥2

2 − 5𝑥3
2 − 6𝑥1𝑥2 + 4𝑥2𝑥3 in quadratic form;

• From previous slide, we know that the diagonal elements of the matrix 𝐴 must be the coefficients of 

the quadratic terms of the polynomial. The polynomial has 3 variables for the vector 𝑥, implying a 

3 × 3 symmetric matrix; off-diagonal terms are symmetric and are one-half of the cross-terms; thus

• 𝑄 𝑥 = 𝑥𝑇𝐴𝑥 = 𝑥1 𝑥2 𝑥3

−3 −3 0
−3 4 2
0 2 −5

𝑥1
𝑥2
𝑥3

= 𝑥1 𝑥2 𝑥3

−3𝑥1 − 3𝑥2
−3𝑥1 + 4𝑥2 + 2𝑥3

2𝑥2 − 5𝑥3

Eqn. 2.17 ;

• We simplify this to:

•

𝑄(𝑥) = 𝑥1 −3𝑥1 − 3𝑥2 + 𝑥2 −3𝑥1 + 4𝑥2 + 2𝑥3 + 𝑥3(2𝑥2 − 5𝑥3)

= −3𝑥1
2 − 3𝑥1𝑥2 − 3𝑥1𝑥2 + 4𝑥2

2 + 2𝑥2𝑥3 + 2𝑥2𝑥3 − 5𝑥3
2

= −3𝑥1
2 + 4𝑥2

2 − 5𝑥3
2 − 6𝑥1𝑥2 + 4𝑥2𝑥3 QED

Eqn. (2.18).
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Quadratic Optimization 
• Suppose we are given the variables 𝑥1, 𝑥2, 𝑥3, which model a binary yes/no (or 1/0) 

decision. Now suppose a combination of these variables in a non-trivial decision 

process is written as the function 

𝑄 𝑥 = −2𝑥1 + 𝑥2 + 4𝑥3 + 2𝑥1𝑥2 + 4𝑥1𝑥3 + 6𝑥2𝑥3 Eqn. (2.19);

• The objective is to minimize the function 𝑄 𝑥 , i.e., find the yes/no decision values for 

each 𝑥𝑖; there might or might not be constraints imposed on some of the 𝑥𝑖;

• Since the variables are binary, it is true that 𝑥𝑖 = 𝑥𝑖
2, which means the terms linear in 

𝑥𝑖 in Eqn. (2.19) can be replaced by quadratic versions so that (2.19) becomes 

𝑄 𝑥 = −2𝑥1
2 + 𝑥2

2 + 4𝑥3
2 + 2𝑥1𝑥2 + 4𝑥1𝑥3 + 6𝑥2𝑥3 Eqn. (2.20);

⟹𝑄 𝑥 = 𝑥𝑇𝐴𝑥 = [𝑥1 𝑥2 𝑥3]
−2 1 2
1 1 3
2 3 4

𝑥1
𝑥2
𝑥3

Eqn. 2.21);
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Singular Value Decomposition (SVD) 

• SVD can be viewed as (i) a method for transforming correlated variables into 

uncorrelation ones to better expose relationships among the original dataset; (ii) a method 

for identifying dimensions along which data varies the most; or (iii) a method to finding 

an approximation to an original dataset with fewer dimensions;

• Formally, SVD is a method for decomposing a matrix 𝐴𝑚𝑛 into a product of 3 simpler, 

but special matrices, 𝑈𝑚𝑚, 𝐷𝑚𝑛, 𝑉𝑛𝑛
𝑇 , (note: 𝐷𝑚𝑛 is a diagonal matrix of singular values):

𝐴𝑚𝑛 = 𝑈𝑚𝑚𝐷𝑚𝑛𝑉𝑛𝑛
𝑇 Eqn. (2.22);

• The matrix 𝑈 is comprised of the orthonormal eigenvectors of 𝐴𝐴𝑇 and 𝑉 is comprised of 

the orthonormal eigenvectors of 𝐴𝑇𝐴; 𝐷 is a diagonal matrix comprised of the square 

roots of the eigenvalues of 𝑈 or 𝑉 in descending order; furthermore, 𝑈𝑇𝑈 = 𝐼, 𝑉𝑇𝑉 = 𝐼;
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Gram-Schmidt Orthogonal Vector Construction

• Given three independent vectors e, f, g, we can construct three 

orthogonal vectors E, F, G; the process is illustrated in the 

graphic on the right (where we only show 𝒆 𝑎𝑛𝑑 𝒇);

• Choose 𝑬 = 𝒆; since 𝑭 must be perpendicular to E, we take the 

projection of 𝒇 on 𝑬; this is 𝒑 =
𝑬𝑻𝒇

𝑬𝑻𝑬
𝑬;  to get 𝐹, we must 

subtract the projection 𝒑 from 𝒇;

• Thus 𝑭 = 𝒇 −
𝑬𝑻𝒇

𝑬𝑻𝑬
𝑬 Eqn. (2.23);

• In the same manner, we get the 3rd perpendicular vector 

𝐺 = 𝑔 −
𝐸𝑇𝑔

𝐸𝑇𝐸
𝐸 −

𝐹𝑇𝑔

𝐹𝑇𝐹
𝐹 Eqn. (2.24).
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Gram-Schmidt Orthonormalization

• Once the orthogonal vectors 𝐸, 𝐹, 𝐺 have been created, they are normalized in the 

following manner:

Ƹ𝑒 =
𝐸

𝐸
, መ𝑓 =

𝐹

𝐹
, and ො𝑔 =

𝐺

𝐺
;

• Given the vectors 𝑎 =
1
−1
0

, 𝑏 =
4
0
−4

, and 𝑐 =
1
−1
1

, construct orthogonal vectors 

from them;

• Accept 𝐴 = 𝑎, then 𝐴𝑇𝐴 = 2, thus 𝐵 = 𝑏 −
𝐴𝑇𝑏

𝐴𝑇𝐴
𝐴 = 𝑏 −

4

2
𝐴 =

2
2
−4

;

• Finally, 𝐶 = 𝑐 −
𝐴𝑇𝑐

𝐴𝑇𝐴
𝐴 −

𝐵𝑇𝑐

𝐵𝑇𝐵
𝐵 = 𝑐 −

2

2
𝐴 +

1

6
𝐵 =

1

6

1
1
1 27



Gram-Schmidt Orthonormalization

• The orthogonal vectors 𝐴, 𝐵, 𝐶 must now be normalized by dividing by their lengths 

𝐴 = 2, 𝐵 = 2 3, 𝐶 = Τ1 2 3;

• Thus ො𝑎 =
𝐴

𝐴
=

1

2

1
−1
0

, ෠𝑏 =
𝐵

𝐵
=

1

3

1
1
−2

and Ƹ𝑐 =
1

3

1
1
1

;

• Determination of orthogonal vectors from linearly independent vectors is important for 

SVD;

• Normalized orthogonal vectors are the columns of the matrices that form the U and V 

matrices in SVD.
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Numerical Example of SVD 

• Perform the SVD of 𝐴 =
2 1 1
−1 2 1

; 

• 𝐴𝐴𝑇 =
2 1 1
−1 2 1

2 −1
1 2
1 1

=
6 1
1 6

⟹ eigenvalues of 𝐴𝐴𝑇 are 𝜆1 = 5, 𝜆2 = 7, and 

eigenvectors are 𝑤1 =
1
−1

and 𝑤2 =
1
1

;

• By the Gram-Schmidt method, we calculate the normal vectors 𝑢1 = 𝑤1 =
1
−1

and 

𝑢2= 𝑤2 −
𝑢1
𝑇𝑤2

𝑢1
𝑇𝑢1

𝑢1 =
1
1
−

[1 −1]
1
1

[1 −1]
1
−1

.
1
−1

=
1
1

; the normalized vectors are 

ො𝑢1 =
Τ1 2

Τ−1 2
and ො𝑢2 =

Τ1 2

Τ1 2
⟹ Matrix 𝑈 = ො𝑢1 ො𝑢2 =

1

2

1 1
−1 1

;
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• We now calculate 𝐴𝑇𝐴 =
2 −1
1 2
1 1

2 1 1
−1 2 1

=
5 0 1
0 5 3
1 3 2

⟹ Eigenvalues of 𝐴𝑇𝐴 are 𝜆1 = 0, 𝜆2 = 5, 𝜆3 = 7 and eigenvector for 𝜆3 = 7 is 𝑧3 =
1
3
2

and for 𝜆2 = 5, it 

is 𝑧2 =
3
−1
0

; and for 𝜆1 = 0, it is 𝑧1 =
1
3
−5

;
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• By the Gram-Schmidt process, we calculate the orthogonal vector 𝑣1 = 𝑧1 =
1
3
−5

, then 

𝑣2 = 𝑧2 −
𝑣1
𝑇𝑧2

𝑣1
𝑇𝑣1

𝑣1 =
3
−1
0

−
0

35
.
1
3
−5

=
3
−1
0

, and 

𝑣3 = 𝑧3 −
𝑣1
𝑇𝑧3

𝑣1
𝑇𝑣1

𝑣1 −
𝑣2
𝑇𝑧3

𝑣2
𝑇𝑣2

𝑣2 =
1
3
2

− 0 − 0 =
1
3
2

; 

Orthonormalized vectors are therefore ො𝑣1 =
1

35

1
3
−5

, ො𝑣2 =
1

10

3
−1
0

, ො𝑣3 =
1

14

1
3
2
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Numerical Example of SVD 

• The matrix 𝑉 of the SVD is therefore 

𝑉 = ො𝑣1 ො𝑣2 ො𝑣3 =

Τ1 35 Τ3 10 Τ1 14

Τ3 35 Τ−1 10 Τ3 14

Τ−5 35 Τ0 10 Τ2 14

;

• One can now take the transpose of 𝑉 ⟶ 𝑉𝑇;

• All the matrices for decomposition of 𝐴 have now been determined; observe that 

𝐴23 = 𝑉22𝐷23𝑉33
𝑇

where 𝐷23 =
7 0 0

0 5 0
.
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SVD and Linear System of Equations 

• We already stated that matrices are important for solving a system of linear equations of 

the form 

𝐴𝑥 = 𝑏 Eqn. (2.25)

• In most cases, 𝐴 is an 𝑚 × 𝑛 matrix and 𝑏 is an 𝑚 × 1 vector (in the general non-

geometric sense); if 𝑚 = 𝑛, there is a good chance we can find the unknown vector 𝑥, in 

which case 

𝐴−1𝐴𝑥 = 𝐴−1𝑏 ⟹ 𝑥 = 𝐴−1𝑏 Eqn. (2.26);

• Another way of solving for 𝑥 is to use the transpose of 𝐴, thus

𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏 ⟹ 𝑥 = 𝐴𝑇𝐴 −1𝐴𝑇𝑏 Eqn. (2.27)

• This approach is the least-squares sense of solution with 

𝐴† = 𝐴𝑇𝐴 −1𝐴𝑇 Eqn. 2.28 ,

where 𝐴† is defined as the Moore-Penrose pseudo-inverse of A.
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Moore-Penrose Pseudoinverse 
• Together with SVD, the Moore-Penrose pseudoinverse permits solution of linear 

system of equations where the matrix maybe (i) square but singular or degenerate, (ii) 

underdetermined (fewer equations than unknowns), or (iii) overdetermined (more 

equations than unknowns);

• Consider the matrix 𝐴 below which is for an overdetermined system

𝐴 =
2 2
2 2
0 0

⟹ 𝐴𝐴𝑇 =
8 8 0
8 8 0
0 0 0

with eigenvalues of 𝜆1 = 0, 𝜆2 = 0, 𝜆3 = 16;

𝐴𝑇𝐴 =
8 8
8 8

with eigenvalues of 𝜆1 = 0, 𝜆2 = 16;

• Eigenvectors of 𝐴𝐴𝑇 are 
1
1

and 
1
−1

, and for 𝐴𝑇𝐴 they are 
1
1
0

,
1
−1
0

,
0
0
1

.
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• SVD of the previous matrix 𝐴 using the calculated eigenvalues and eigenvectors is 

𝐴 = 𝑈Λ𝑉𝑇 =
Τ1 2 Τ1 2 0

Τ1 2 Τ−1 2 0
0; 0 0

4 0
0 0
0 0

Τ1 2 Τ1 2

Τ1 2 Τ−1 2

𝑇

=
2 2
2 2
0 0

;

• It is now relatively easy to calculate the pseudoinverse of 𝐴 so the linear system 𝐴𝑥 = 𝑏
can be solved as indicated below

𝑥 = 𝐴𝑇𝐴 −1𝐴𝑇𝑏 = 𝑈Λ−1𝑉𝑇𝑏 Eqn. (2.29);

• The 𝑈 and 𝑉𝑇 can be directly read off from above and the reciprocal of Λ−1 is trivial to 

obtain since Λ is available from above.

35

SVD and Moore-Penrose Pseudoinverse 



SVD Partitioning of Information stored in a Matrix

• Matrix 𝑀 stores viewership information of 

Netflix movies by a group of friends who 

have either seen (1) or not seen (0) a movie; 

• Information contained in 𝑀 can be analyzed 

by Netflix to create a recommender 

algorithm using SVD;

• Many or large singular values in 𝐷, which are 

the square roots of eigenvalues of 𝑈 or 𝑉, tell 

us about the strength of interactions between 

what is stored in 𝑈 and 𝑉.
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Data Partitioning and Compression by SVD 

• In the previous Netflix example of the data stored in the matrix 𝑀 and subsequent analysis by 

SVD: 𝑀 = 𝑈𝐷𝑉𝑇, useful information about the relationship of viewership to movies is 

contained in matrix 𝑈, which tells us about the viewers and matrix 𝑉 which contains information 

about the movies;

• The diagonal matrix 𝐷, comprised of the singular values, indicates the level of importance of the 

interaction between viewers and movies; many singular values mean there is lots of interaction 

between viewers and movies;

• Since 𝐷 is typically of low-dimensional space (telling us the rank of matrix 𝑀), it provides a 

way to compress the data contained in 𝑀.

• The graphic illustration provides addition information about the meaning of SVD;

37



Role of SVD in Linear Transformations 

• The role of an 𝑚 × 𝑛 matrix 𝑀 is to perform linear transformations on points by taking them 

from ℝ𝑛 to ℝ𝑚; the matrix 𝑀 = 𝑈Λ𝑉𝑇 encodes rotations and rescaling; 

• SVD essentially factors out the transformations into 𝑉𝑇 which is a rotation, Λ a rescaling along 

the principal axes, and 𝑈 which is another rotation;

• SVD can be used to compress data in the matrix 𝑀; for example, when 𝑀 is comprised of pixel 

data of an image; without SVD, the matrix 𝑀 requires 𝑚𝑛 storage values; by decomposing 𝑀
into 𝑈𝑚𝑟 , Λ𝑟, and 𝑉𝑟𝑛, the values required become 𝑚𝑟 + 𝑟 + 𝑛𝑟; since usually 𝑟 < 𝑚, 𝑛, it is 

evident that the new storage requirement 𝑚𝑟 + 𝑟 + 𝑛𝑟 < 𝑚𝑛.
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